Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Front Psychiatry ; 12: 701408, 2021.
Article En | MEDLINE | ID: mdl-34421682

Major depressive disorder (MDD) leads to pervasive changes in the health of afflicted patients. Despite advances in the understanding of MDD and its treatment, profound innovation is needed to develop fast-onset antidepressants with higher effectiveness. When acutely administered, the endogenous nucleoside guanosine (GUO) shows fast-onset antidepressant-like effects in several mouse models, including the olfactory bulbectomy (OBX) rodent model. OBX is advocated to possess translational value and be suitable to assess the time course of depressive-like behavior in rodents. This study aimed at investigating the long-term behavioral and neurochemical effects of GUO in a mouse model of depression induced by bilateral bulbectomy (OBX). Mice were submitted to OBX and, after 14 days of recovery, received daily (ip) administration of 7.5 mg/kg GUO or 40 mg/kg imipramine (IMI) for 45 days. GUO and IMI reversed the OBX-induced hyperlocomotion and recognition memory impairment, hippocampal BDNF increase, and redox imbalance (ROS, NO, and GSH levels). GUO also mitigated the OBX-induced hippocampal neuroinflammation (IL-1, IL-6, TNF-α, INF-γ, and IL-10). Brain microPET imaging ([18F]FDG) shows that GUO also prevented the OBX-induced increase in hippocampal FDG metabolism. These results provide additional evidence for GUO antidepressant-like effects, associated with beneficial neurochemical outcomes relevant to counteract depression.

2.
Neurotox Res ; 39(2): 327-334, 2021 Apr.
Article En | MEDLINE | ID: mdl-33196952

Since proline metabolism has been implicated to play an underlying role in apoptotic signaling and cancer, and hyperprolinemic patients present susceptibility to tumors development, this study investigated the effect of proline on cell death, cell cycle, antioxidant enzymes activities, and immunocontent/activity of proteins involved in cell death/survival signaling pathways in C6 glioma cells. C6 cells were incubated with proline (0-5 mM) for 1 h, 24 h, 48 h, 72 h, or 7 days. Proline in high concentrations slightly decreased LDH release, and no cytotoxic effect was seen by Annexin-PI staining. Superoxide dismutase and catalase activities were increased by proline (1 mM) after 72 h, suggesting an increase in reactive species levels. Acetylcholinesterase activity was inhibited by proline at 1, 3, and 5 mM. The cell cycle progression was not altered. Results from Western blot analyses showed that proline at 1 mM after 72 h increased p-NF-ĸB and decreased acetylcholinesterase immunocontent but did not altered AKT, p-AKT, GSK3ß, and p-GSK3ß. Taken together, the data suggest that high proline levels seems to favor the signaling pathways towards cell proliferation, since acetylcholinesterase, which may act as tumor suppressor, is inhibited by proline. Also, p-NF-κB is increased by proline treatment and its activation is related to tumor cell proliferation and cellular response to oxidants. Proline also induced oxidative stress, but it appears to be insufficient to induce a significant change in cell cycle progression. These data may be related, at least in part, to the increased susceptibility to tumor development in hyperprolinemic individuals.


Cell Cycle/drug effects , Cell Death/drug effects , Glioblastoma/metabolism , Oxidative Stress/drug effects , Proline/administration & dosage , Proline/metabolism , Animals , Cell Line, Tumor , Rats , Signal Transduction
3.
Neurotox Res ; 32(2): 276-290, 2017 Aug.
Article En | MEDLINE | ID: mdl-28429309

Tissue accumulation of α-ketoadipic (KAA) and α-aminoadipic (AAA) acids is the biochemical hallmark of α-ketoadipic aciduria. This inborn error of metabolism is currently considered a biochemical phenotype with uncertain clinical significance. Considering that KAA and AAA are structurally similar to α-ketoglutarate and glutamate, respectively, we investigated the in vitro effects of these compounds on glutamatergic neurotransmission in the brain of adolescent rats. Bioenergetics and redox homeostasis were also investigated because they represent fundamental systems for brain development and functioning. We first observed that AAA significantly decreased glutamate uptake, whereas glutamate dehydrogenase activity was markedly inhibited by KAA in a competitive fashion. In addition, AAA and more markedly KAA induced generation of reactive oxygen and nitrogen species (increase of 2',7'-dichloroflurescein (DCFH) oxidation and nitrite/nitrate levels), lipid peroxidation (increase of malondialdehyde concentrations), and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content), besides decreasing the antioxidant defenses (reduced glutathione (GSH)) and aconitase activity. Furthermore, KAA-induced lipid peroxidation and GSH decrease were prevented by the antioxidants α-tocopherol, melatonin, and resveratrol, suggesting the involvement of reactive species in these effects. Noteworthy, the classical inhibitor of NMDA glutamate receptors MK-801 was not able to prevent KAA-induced and AAA-induced oxidative stress, determined by DCFH oxidation and GSH levels, making unlikely a secondary induction of oxidative stress through overstimulation of glutamate receptors. In contrast, KAA and AAA did not significantly change brain bioenergetic parameters. We speculate that disturbance of glutamatergic neurotransmission and redox homeostasis by KAA and AAA may play a role in those cases of α-ketoadipic aciduria that display neurological symptoms.


2-Aminoadipic Acid/pharmacology , Adipates/pharmacology , Cerebral Cortex/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Oxidative Stress/drug effects , Adenosine Triphosphatases/metabolism , Animals , Cell Membrane/drug effects , Glutamate Dehydrogenase/metabolism , Glutamate-Ammonia Ligase/metabolism , Glutamic Acid/metabolism , Homeostasis/drug effects , Liver/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Multienzyme Complexes/metabolism , Protein Carbonylation/drug effects , Rats , Synapses/drug effects , Tritium/metabolism
4.
Article En | MEDLINE | ID: mdl-28223107

Major depressive disorder (MDD) is a neuropsychiatric disease that is associated with profound disturbances in affected individuals. Elucidating the pathophysiology of MDD has been frustratingly slow, especially concerning the neurochemical events and brain regions associated with disease progression. Thus, we evaluated the time-course (up to 8weeks) behavioral and biochemical effects in mice that underwent to a bilateral olfactory bulbectomy (OBX), which is used to modeling depressive-like behavior in rodents. Similar to the symptoms in patients with MDD, OBX induced long-lasting (e.g., impairment of habituation to novelty, hyperactivity and an anxiety-like phenotype) and transient (e.g., loss of self-care and motivational behavior) behavioral effects. Moreover, OBX temporarily impaired hippocampal synaptosomal mitochondria, in a manner that would be associated with hippocampal-related synaptotoxicity. Finally, long-lasting pro-oxidative (i.e., increased levels of reactive oxygen species and nitric oxide and decreased glutathione levels) and pro-inflammatory (i.e., increased levels of pro-inflammatory cytokines IL-1, IL-6, TNF-α and decreased anti-inflammatory cytokine IL-10 levels) effects were induced in the hippocampus by OBX. Additionally, these parameters were transiently affected in the posterior and frontal cortices. This study is the first to suggest that the transient and long-lasting behavioral effects from OBX strongly correlate with mitochondrial, oxidative and inflammatory parameters in the hippocampus; furthermore, these effects show a weak correlation with these parameters in the cortex. Our findings highlight the underlying mechanisms involved in the biochemical time course of events related to depressive behavior.


Behavior, Animal/physiology , Depressive Disorder, Major , Hippocampus , Inflammation , Olfactory Bulb/surgery , Animals , Depressive Disorder, Major/immunology , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/physiopathology , Disease Models, Animal , Hippocampus/immunology , Hippocampus/metabolism , Inflammation/immunology , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL
5.
Mol Neurobiol ; 54(1): 423-436, 2017 01.
Article En | MEDLINE | ID: mdl-26742520

Accumulating evidences indicate that endogenous modulators of excitatory synapses in the mammalian brain are potential targets for treating neuropsychiatric disorders. Indeed, glutamatergic and adenosinergic neurotransmissions were recently highlighted as potential targets for developing innovative anxiolytic drugs. Accordingly, it has been shown that guanine-based purines are able to modulate both adenosinergic and glutamatergic systems in mammalian central nervous system. Here, we aimed to investigate the potential anxiolytic-like effects of guanosine and its effects on the adenosinergic and glutamatergic systems. Acute/systemic guanosine administration (7.5 mg/kg) induced robust anxiolytic-like effects in three classical anxiety-related paradigms (elevated plus maze, light/dark box, and round open field tasks). These guanosine effects were correlated with an enhancement of adenosine and a decrement of glutamate levels in the cerebrospinal fluid. Additionally, pre-administration of caffeine (10 mg/kg), an unspecific adenosine receptors' antagonist, completely abolished the behavioral and partially prevented the neuromodulatory effects exerted by guanosine. Although the hippocampal glutamate uptake was not modulated by guanosine (both ex vivo and in vitro protocols), the synaptosomal K+-stimulated glutamate release in vitro was decreased by guanosine (100 µM) and by the specific adenosine A1 receptor agonist, 2-chloro-N 6-cyclopentyladenosine (CCPA, 100 nM). Moreover, the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 nM) fully reversed the inhibitory guanosine effect in the glutamate release. The pharmacological modulation of A2a receptors has shown no effect in any of the evaluated parameters. In summary, the guanosine anxiolytic-like effects seem closely related to the modulation of adenosinergic (A1 receptors) and glutamatergic systems.


Adenosine A1 Receptor Antagonists/pharmacology , Adenosine/metabolism , Anti-Anxiety Agents/therapeutic use , Glutamic Acid/metabolism , Guanosine/therapeutic use , Receptor, Adenosine A1/metabolism , Animals , Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Anxiety/metabolism , Guanosine/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Male , Neurotransmitter Agents/metabolism , Rats , Rats, Wistar
6.
Biochim Biophys Acta ; 1860(11 Pt A): 2510-2520, 2016 11.
Article En | MEDLINE | ID: mdl-27475002

BACKGROUND: Diphenylditelluride (PhTe)2 is a potent neurotoxin disrupting the homeostasis of the cytoskeleton. METHODS: Cultured astrocytes and neurons were incubated with (PhTe)2, receptor antagonists and enzyme inhibitors followed by measurement of the incorporation of [32P]orthophosphate into intermediate filaments (IFs). RESULTS: (PhTe)2 caused hyperphosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits (NFL, NFM and NFH) from primary astrocytes and neurons, respectively. These mechanisms were mediated by N-methyl-d-aspartate (NMDA) receptors, L-type voltage-dependent calcium channels (L-VDCCs) as well as metabotropic glutamate receptors upstream of phospholipase C (PLC). Upregulated Ca(2+) influx activated protein kinase A (PKA) and protein kinase C (PKC) in astrocytes causing hyperphosphorylation of GFAP and vimentin. Hyperphosphorylated (IF) together with RhoA-activated stress fiber formation, disrupted the cytoskeleton leading to altered cell morphology. In neurons, the high intracellular Ca(2+) levels activated the MAPKs, Erk and p38MAPK, beyond PKA and PKC, provoking hyperphosphorylation of NFM, NFH and NFL. CONCLUSIONS: Our findings support that intracellular Ca(2+) is one of the crucial signals that modulate the action of (PhTe)2 in isolated cortical astrocytes and neurons modulating the response of the cytoskeleton against the insult. GENERAL SIGNIFICANCE: Cytoskeletal misregulation is associated with neurodegeneration. This compound could be a valuable tool to induce molecular changes similar to those found in different pathologies of the brain.


Actin Cytoskeleton/metabolism , Astrocytes/drug effects , Benzene Derivatives/pharmacology , Calcium Signaling , Neurons/drug effects , Organometallic Compounds/pharmacology , Animals , Astrocytes/metabolism , Benzene Derivatives/toxicity , Cells, Cultured , Neurons/metabolism , Organometallic Compounds/toxicity , Rats , Rats, Wistar
7.
Purinergic Signal ; 12(1): 149-59, 2016 Mar.
Article En | MEDLINE | ID: mdl-26695181

In addition to its intracellular roles, the nucleoside guanosine (GUO) also has extracellular effects that identify it as a putative neuromodulator signaling molecule in the central nervous system. Indeed, GUO can modulate glutamatergic neurotransmission, and it can promote neuroprotective effects in animal models involving glutamate neurotoxicity, which is the case in brain ischemia. In the present study, we aimed to investigate a new in vivo GUO administration route (intranasal, IN) to determine putative improvement of GUO neuroprotective effects against an experimental model of permanent focal cerebral ischemia. Initially, we demonstrated that IN [(3)H] GUO administration reached the brain in a dose-dependent and saturable pattern in as few as 5 min, presenting a higher cerebrospinal GUO level compared with systemic administration. IN GUO treatment started immediately or even 3 h after ischemia onset prevented behavior impairment. The behavior recovery was not correlated to decreased brain infarct volume, but it was correlated to reduced mitochondrial dysfunction in the penumbra area. Therefore, we showed that the IN route is an efficient way to promptly deliver GUO to the CNS and that IN GUO treatment prevented behavioral and brain impairment caused by ischemia in a therapeutically wide time window.


Brain Ischemia/drug therapy , Guanosine/administration & dosage , Guanosine/therapeutic use , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Stroke/drug therapy , Administration, Intranasal , Animals , Behavior, Animal , Brain Ischemia/psychology , Cerebral Infarction/pathology , Cerebral Infarction/prevention & control , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Guanosine/cerebrospinal fluid , Guanosine/pharmacokinetics , Male , Mitochondria/drug effects , Neuroprotective Agents/cerebrospinal fluid , Neuroprotective Agents/pharmacokinetics , Rats , Rats, Wistar , Stroke/psychology
8.
Mol Neurobiol ; 53(2): 1065-1079, 2016 Mar.
Article En | MEDLINE | ID: mdl-25579384

Hyperprolinemias are inherited disorder of proline (Pro) metabolism. Patients affected may present neurological manifestations, but the mechanisms of neural excitotoxicity elicited by hyperprolinemia are far from being understood. Considering that the astrocytes are important players in neurological disorders, the aim of the present work was to study the effects 1 mM Pro on glutamatergic and inflammatory parameters in cultured astrocytes from cerebral cortex of rats, exploring some molecular mechanisms underlying the disrupted homeostasis of astrocytes exposed to this toxic Pro concentration. We showed that cortical astrocytes of rats exposed to 1 mM Pro presented significantly elevated extracellular glutamate and glutamine levels, suggesting glutamate excitotoxicity. The excess of glutamate elicited by Pro together with increased glutamate uptake and upregulated glutamine synthetase (GS) activity supported misregulated glutamate homeostasis in astrocytic cells. High Pro levels also induced production/release of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6. We also evidenced misregulation of cholinergic anti-inflammatory system with increased acetylcholinesterase (AChE) activity and decreased acetylcholine (ACh) levels, contributing to the inflammatory status in Pro-treated astrocytes. Our findings highlighted a crosstalk among disrupted glutamate homeostasis, cholinergic mechanisms, and inflammatory cytokines, since ionotropic (DL-AP5 and CNQX) and metabotropic (MCPG and MPEP) glutamate antagonists were able to restore the extracellular glutamate and glutamine levels; downregulate TNFα and IL6 production/release, modulate GS and AChE activities; and restore ACh levels. Otherwise, the non-steroidal anti-inflammatory drugs nimesulide, acetylsalicylic acid, ibuprofen, and diclofenac sodium decreased the extracellular glutamate and glutamine levels, downregulated GS and AChE activities, and restored ACh levels in Pro-treated astrocytes. Altogether, our results evidence that the vulnerability of metabolic homeostasis in cortical astrocytes might have important implications in the neurotoxicity of Pro.


Astrocytes/metabolism , Choline/metabolism , Glutamic Acid/metabolism , Homeostasis/drug effects , Inflammation/metabolism , Inflammation/pathology , Proline/pharmacology , Acetylcholinesterase/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Astrocytes/drug effects , Cerebral Cortex/cytology , Cytokines/metabolism , Glutamate-Ammonia Ligase/metabolism , Glutamine/metabolism , Rats, Wistar
9.
Alcohol ; 49(7): 665-74, 2015 Nov.
Article En | MEDLINE | ID: mdl-26314629

Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity.


Central Nervous System Depressants/toxicity , Cytoskeleton/drug effects , Ethanol/toxicity , Hippocampus/drug effects , Lactation , Animals , Animals, Newborn , Body Weight/drug effects , Cyclic AMP-Dependent Protein Kinases/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Energy Intake/drug effects , Female , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/embryology , Homeostasis , Intermediate Filaments/drug effects , MAP Kinase Signaling System/drug effects , Neurofilament Proteins/metabolism , Phosphorylation , Pregnancy , Rats , Rats, Wistar
10.
Metab Brain Dis ; 28(3): 429-38, 2013 Sep.
Article En | MEDLINE | ID: mdl-23378107

Carbonyl compounds such as methylglyoxal (MGO) seem to play an important role in complications resulting from diabetes mellitus, in aging and neurodegenerative disorders. In this study, we are showing, that MGO is able to suppress cell viability and induce apoptosis in the cerebral cortex and hippocampus of neonatal rats ex-vivo. These effects are partially related with ROS production, evaluated by DCFH-DA assay. Coincubation of MGO and reduced glutathione (GSH) or Trolox (vitamin E) totally prevented ROS production but only partially prevented the MGO-induced decreased cell viability in the two brain structures, as evaluated by the MTT assay. Otherwise, L-NAME, a nitric oxide (NO) inhibitor, partially prevented ROS production in the two structures but partially prevented cytotoxicity in the hippocampus. Pharmacological inhibition of Erk, has totally attenuated MGO-induced ROS production and cytotoxicity, suggesting that MEK/Erk pathway could be upstream of ROS generation and cell survival. Otherwise, p38MAPK and JNK failed to prevent ROS generation but induced decreased cell survival consistent with ROS-independent mechanisms. We can propose that Erk, p38MAPK and JNK are involved in the cytotoxicity induced by MGO through different signaling pathways. While Erk could be an upstream effector of ROS generation, p38MAPK and JNK seem to be associated with ROS-independent cytotoxicity in neonatal rat brain. The cytotoxic damage progressed to apoptotic cell death at MGO concentration higher than those described for adult brain, suggesting that the neonatal brain is resistant to MGO-induced cell death. The consequences of MGO-induced brain damage early in life, remains to be clarified. However, it is feasible that high MGO levels during cortical and hippocampal development could be, at least in part, responsible for the impairment of cognitive functions in adulthood.


Brain/pathology , Mitogen-Activated Protein Kinases/metabolism , Oxidative Stress/drug effects , Pyruvaldehyde/toxicity , Animals , Animals, Newborn , Annexin A5/metabolism , Antioxidants/pharmacology , Blotting, Western , Brain/drug effects , Brain/enzymology , Cell Survival/drug effects , Coloring Agents , Fluorescent Dyes , In Vitro Techniques , L-Lactate Dehydrogenase/metabolism , MAP Kinase Kinase 4/metabolism , Nerve Tissue Proteins/metabolism , Pyruvaldehyde/antagonists & inhibitors , Pyruvaldehyde/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Tetrazolium Salts , Thiazoles , p38 Mitogen-Activated Protein Kinases/metabolism
11.
Exp Cell Res ; 319(3): 89-104, 2013 Feb 01.
Article En | MEDLINE | ID: mdl-23142028

Hyperprolinemia is an inherited disorder of proline (Pro) metabolism and patients affected by this disease may present neurological manifestations. However, the mechanisms of neural excitotoxicity elicited by hyperprolinemia are far from being understood. Considering the pivotal role of cytoskeletal remodeling in several neurodegenerative pathologies and the potential links between cytoskeleton, reactive oxygen species production and cell death, the aim of the present work was to study the effects of Pro on astrocyte and neuron cytoskeletal remodeling and the possible oxidative stress involvement. Pro induced a shift of actin cytoskeleton in stress fibers together with increased RhoA immunocontent and ERK1/2 phosphorylation/activation in cortical astrocytes. Unlike astrocytes, results evidenced little susceptibility of neuron cytoskeleton remodeling, since Pro-treated neurons presented unaltered neuritogenesis. We observed increased hydrogen peroxide production characterizing oxidative stress together with decreased superoxide dismutase (SOD) and catalase (CAT) activities in cortical astrocytes after Pro treatment, while glutathione peroxidase (GSHPx) activity remained unaltered. However, coincubation with Pro and Trolox/melatonin prevented decreased SOD and CAT activities in Pro-treated astrocytes. Accordingly, these antioxidants were able to prevent the remodeling of the actin cytoskeleton, RhoA increased levels and ERK1/2 phosphorylation in response to high Pro exposure. Taken together, these findings indicated that the cytoskeleton of cortical astrocytes, but not of neurons in culture, is a target to Pro and such effects could be mediated, at least in part, by redox imbalance, RhoA and ERK1/2 signaling pathways. The vulnerability of astrocyte cytoskeleton may have important implications for understanding the effects of Pro in the neurotoxicity linked to inborn errors of Pro metabolism.


Astrocytes/drug effects , Cerebral Cortex/drug effects , Cytoskeleton/drug effects , Oxidative Stress/drug effects , Proline/pharmacology , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Animals , Animals, Newborn , Antioxidants/metabolism , Astrocytes/metabolism , Astrocytes/physiology , Astrocytes/ultrastructure , Cell Survival/drug effects , Cells, Cultured , Cerebral Cortex/metabolism , Cerebral Cortex/ultrastructure , Cytoskeleton/metabolism , Cytoskeleton/physiology , Embryo, Mammalian , Oxidative Stress/physiology , Proline/adverse effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
12.
Neurotoxicology ; 34: 175-88, 2013 Jan.
Article En | MEDLINE | ID: mdl-23182946

In the present report 15 day-old rats were injected with 0.3µmol of diphenyl ditelluride (PhTe)(2)/kg body weight and parameters of neurodegeneration were analyzed in slices from cerebellum 3 and 6 days afterwards. The earlier responses, at day 3 after injection, included hyperphosphorylation of intermediate filament (IF) proteins from astrocyte (glial fibrillary acidic protein - GFAP - and vimentin) and neuron (low-, medium- and high molecular weight neurofilament subunits: NF-L, NF-M and NF-H); increased mitogen-activated protein kinase (MAPK) (Erk and p38MAPK) and cAMP-dependent protein kinase (PKA) activities. Also, reactive astrogliosis takes part of the early responses to the insult with (PhTe)(2), evidenced by upregulated GFAP in Western blot, PCR and immunofluorescence analysis. Six days after (PhTe)(2) injection we found persistent astrogliosis, increased propidium iodide (PI) positive cells in NeuN positive population evidenced by flow cytometry and reduced immunofluorescence for NeuN, suggesting that the in vivo exposure to (PhTe)(2) progressed to neuronal death. Moreover, activated caspase 3 suggested apoptotic neuronal death. Neurodegeneration was related with decreased [(3)H]glutamate uptake and decreased Akt immunoreactivity, however phospho-GSK-3-ß (Ser9) was not altered in (PhTe)(2) injected rat. Therefore, the present results show that the earlier cerebellar responses to (PhTe)(2) include disruption of cytoskeletal homeostasis that could be related with MAPK and PKA activation and reactive astrogliosis. Akt inhibition observed at this time could also play a role in the neuronal death evidenced afterwards. The later events of the neurodegenerative process are characterized by persistent astrogliosis and activation of apoptotic neuronal death through caspase 3 mediated mechanisms, which could be related with glutamate excitotoxicity. The progression of these responses are therefore likely to be critical for the outcome of the neurodegeneration provoked by (PhTe)(2) in rat cerebellum.


Apoptosis/drug effects , Astrocytes/drug effects , Benzene Derivatives/toxicity , Cerebellum/drug effects , Cytoskeleton/drug effects , Nerve Degeneration , Organometallic Compounds/toxicity , Animals , Animals, Newborn , Astrocytes/metabolism , Astrocytes/pathology , Benzene Derivatives/administration & dosage , Blotting, Western , Caspase 3/metabolism , Cerebellum/metabolism , Cerebellum/pathology , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoskeleton/metabolism , Cytoskeleton/pathology , Female , Flow Cytometry , Fluorescent Antibody Technique , Glial Fibrillary Acidic Protein/metabolism , Homeostasis , Injections, Subcutaneous , Male , Mitogen-Activated Protein Kinases/metabolism , Neurofilament Proteins/metabolism , Organometallic Compounds/administration & dosage , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Time Factors , Vimentin/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Toxicol Appl Pharmacol ; 264(2): 143-52, 2012 Oct 15.
Article En | MEDLINE | ID: mdl-22885153

In the present report 15day-old Wistar rats were injected with 0.3µmol of diphenyl ditelluride (PhTe)(2)/kg body weight and parameters of neurodegeneration were analyzed in slices from striatum 6days afterwards. We found hyperphosphorylation of intermediate filament (IF) proteins from astrocyte (glial fibrillary acidic protein-GFAP and vimentin) and from neuron (low-, medium- and high molecular weight neurofilament subunits: NF-L, NF-M and NF-H, respectively) and increased MAPK (Erk, JNK and p38MAPK) as well as PKA activities. The treatment induced reactive astrogliosis in the striatum, evidenced by increased GFAP and vimentin immunocontent as well as their mRNA overexpression. Also, (PhTe)(2) significantly increased the propidium iodide (PI) positive cells in NeuN positive population without altering PI incorporation into GFAP positive cells, indicating that in vivo exposure to (PhTe)(2) provoked neuronal damage. Immunohistochemistry showed a dramatic increase of GFAP staining characteristic of reactive astrogliosis. Moreover, increased caspase 3 in (PhTe)(2) treated striatal slices suggested apoptotic cell death. (PhTe)(2) exposure decreased Akt immunoreactivity, however phospho-GSK-3-ß (Ser9) was unaltered, suggesting that this kinase is not directly implicated in the neurotoxicity of this compound. Therefore, the present results shed light into the mechanisms of (PhTe)(2)-induced neurodegeneration in rat striatum, evidencing a critical role for the MAPK and Akt signaling pathways and disruption of cytoskeletal homeostasis, which could be related with apoptotic neuronal death and astrogliosis.


Benzene Derivatives/toxicity , Mitogen-Activated Protein Kinases/physiology , Neostriatum/pathology , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/pathology , Neurotoxicity Syndromes/pathology , Oncogene Protein v-akt/physiology , Organometallic Compounds/toxicity , Animals , Apoptosis/drug effects , Blotting, Western , Cytoskeletal Proteins/metabolism , Electrophoresis, Polyacrylamide Gel , Female , Flow Cytometry , Gliosis/chemically induced , Gliosis/pathology , Homeostasis/drug effects , Immunohistochemistry , Male , Neurons/drug effects , Phosphorus Radioisotopes , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction
14.
Neurotoxicology ; 33(5): 1106-16, 2012 Oct.
Article En | MEDLINE | ID: mdl-22705628

In the present report we examined the effect of maternal exposure to diphenyl ditelluride (PhTe)(2) (0.01 mg/kg body weight) during the first 14 days of lactational period on the activity of some protein kinases targeting the cytoskeleton of striatum and cerebellum of their offspring. We analyzed the phosphorylating system associated with glial fibrillary acidic protein (GFAP), and neurofilament of low, medium and high molecular weight (NF-L, NF-M and NF-H, respectively) of pups on PND 15, 21, 30 and 45. We found that (PhTe)(2) induced hyperphosphorylation of all the proteins studied on PND 15 and 21, recovering control values on PND 30 and 45. The immunocontent of GFAP, NF-L, NF-M and NF-H in the cerebellum of 15-day-old pups was increased. Western blot assays showed activation/phosphorylation of Erk1/2 on PND 21 and activation/phosphorylation of JNK on PND 15. Otherwise, p38MAPK was not activated in the striatum of (PhTe)(2) exposed pups. On the other hand, the cerebellum of pups exposed to (PhTe)(2) presented activated/phosphorylated Erk1/2 on PND 15 and 21 as well as activated/phosphorylated p38MAPK on PND 21, while JNK was not activated. Western blot assays showed that both in the striatum and in the cerebellum of (PhTe)(2) exposed pups, the immunocontent of the catalytic subunit of PKA (PKAcα) was increased on PND 15. Western blot showed that the phosphorylation level of NF-L Ser55 and NF-M/NF-H KSP repeats was increased in the striatum and cerebellum of both 15- and 21-day-old pups exposed to (PhTe)(2). Diphenyl diselenide (PhSe)(2), the selenium analog of (PhTe)(2), prevented (PhTe)(2)-induced hyperphosphorylation of striatal intermediate filament (IF) proteins but it failed to prevent the action of (PhTe)(2) in cerebellum. Western blot assay showed that the (PhSe)(2) prevented activation/phosphorylation of Erk1/2, JNK and PKAcα but did not prevent the stimulatory effect of (PhTe)(2) on p38MAPK in cerebellum at PND 21. In conclusion, this study demonstrated that dam exposure to low doses of (PhTe)(2) can alter cellular signaling targeting the cytoskeleton of striatum and cerebellum in the offspring in a spatiotemporal manner, which can be related to the neurotoxic effects of (PhTe)(2).


Benzene Derivatives/toxicity , Cerebellum/cytology , Corpus Striatum/cytology , Cytoskeleton/metabolism , Homeostasis/drug effects , Neurons/drug effects , Organometallic Compounds/toxicity , Prenatal Exposure Delayed Effects/pathology , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Body Weight/drug effects , Female , Gene Expression Regulation, Developmental/drug effects , Glial Fibrillary Acidic Protein/metabolism , In Vitro Techniques , Neurofilament Proteins/metabolism , Neurons/metabolism , Phosphates/pharmacokinetics , Phosphorus Isotopes/pharmacokinetics , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Rats, Wistar , Signal Transduction/drug effects , Time Factors
15.
J Neuroimmunol ; 249(1-2): 8-15, 2012 Aug 15.
Article En | MEDLINE | ID: mdl-22560157

In this study we investigated the anti-inflammatory effects of chronic ethanol (EtOH) treatment on lipopolysaccharide (LPS)-stimulated C6 glioma cells. The cells were chronically treated with 200mM EtOH; coincubation with LPS and EtOH was obtained upon addition of 2µg/ml LPS to the incubation medium in the last 24h of EtOH exposure. We found that EtOH prevented the LPS-induced production of tumor necrosis factor α (TNFα) without decreasing cell viability. Either LPS treated or EtOH plus LPS treated cells presented upregulated glial fibrillary acidic protein (GFAP) and downregulated vimentin levels characterizing a program of reactive astrogliosis. Also, EtOH plus LPS stimulation greatly increased the oxidative stress generation evaluated by DCF-DA measurement, while either EtOH alone or LPS alone was unable to induce oxidative stress. Western blot analysis indicated that either EtOH, LPS or EtOH plus LPS treatments are unable to affect Akt/GSK3ß signaling pathway. However, LPS alone and EtOH plus LPS co-treatment inhibited Erk phosphorylation. A dramatic loss of stress fibers was found in EtOH exposed cells, evaluated by cytochemistry using phalloidin-fluorescein. However, LPS alone was not able to disrupt actin organization. Furthermore, cells co-incubated with LPS and EtOH presented reversion of the disrupted stress fibers provoked by EtOH. Supporting this action, RhoA and vinculin immunocontent were upregulated in response to EtOH plus LPS. Interestingly, EtOH suppresses the inflammatory cascade (TNFα production) in response to LPS. Concomitantly it sustains Erk inhibition, increases oxidative stress generation and induces reactive astrogliosis in the presence of LPS, conditions associated with neurotoxicity. The effects observed were not supported by actin reorganization. Altogether, these findings suggest that Erk signaling inhibition could play a role in both suppressing TNFα production and inducing oxidative stress generation and astrogliosis, therefore modulating a dual action of EtOH plus LPS in glial cells.


Anti-Inflammatory Agents/pharmacology , Ethanol/pharmacology , MAP Kinase Signaling System/drug effects , Neuroglia/drug effects , Oxidative Stress/drug effects , Animals , Blotting, Western , Cell Line, Tumor , Cell Survival , Electrophoresis, Polyacrylamide Gel , Gliosis/chemically induced , Gliosis/metabolism , Gliosis/pathology , Immunohistochemistry , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/toxicity , Neuroglia/metabolism , Neuroglia/pathology , Rats , Stress Fibers/drug effects , Stress Fibers/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Arch Toxicol ; 86(2): 217-30, 2012 Feb.
Article En | MEDLINE | ID: mdl-21863293

We studied the effect of different concentrations of diphenyl ditelluride (PhTe)(2) on the in vitro phosphorylation of glial fibrillary acidic protein (GFAP) and neurofilament (NF) subunits from cerebral cortex and hippocampus of rats during development. (PhTe)(2)-induced hypophosphorylation of GFAP and NF subunits only in cerebral cortex of 9- and 15-day-old animals but not in hippocampus. Hypophosphorylation was dependent on ionotropic glutamate receptors, as demonstrated by the specific inhibitors 10 µM DL-AP5 and 50 µM MK801, 100 µM CNQX and 100 µM DNQX. Also, 10 µM verapamil and 10 µM nifedipine, two L-voltage-dependent Ca(2+) channels (L-VDCC) blockers; 50 µM dantrolene, a ryanodine channel blocker, and the intracellular Ca(2+) chelator Bapta-AM (50 µM) totally prevented this effect. Results obtained with 0.2 µM calyculin A (PP1 and PP2A inhibitor), 1 µM Fostriecin a potent protein phosphatase 2A (PP2A) inhibitor, 100 µM FK-506 or 100 µM cyclosporine A, specific protein phosphatase 2B inhibitors, pointed to PP1 as the protein phosphatase directly involved in the hypophosphorylating effect of (PhTe)(2). Finally, we examined the activity of DARPP-32, an important endogenous Ca(2+)-mediated inhibitor of PP1 activity. Western blot assay using anti-DARPP-32, anti-pThr34DARPP-32, and anti-pThr75DARPP-32 antibodies showed a decreased phosphorylation level of the inhibitor at Thr34, compatible with inactivation of protein kinase A (PKA) by pThr75 DARPP-32. Decreased cAMP and catalytic subunit of PKA support that (PhTe)(2) acted on neuron and astrocyte cytoskeletal proteins through PKA-mediated inactivation of DARPP-32, promoting PP1 release and hypophosphorylation of IF proteins of those neural cells. Moreover, in the presence of Bapta, the level of the PKA catalytic subunit was not decreased by (PhTe)(2), suggesting that intracellular Ca(2+) levels could be upstream the signaling pathway elicited by this neurotoxicant and targeting the cytoskeleton.


Benzene Derivatives/pharmacology , Cerebral Cortex/drug effects , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Intermediate Filaments/drug effects , Organometallic Compounds/pharmacology , Animals , Cerebral Cortex/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoskeleton/metabolism , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Intermediate Filaments/metabolism , Phosphorylation/drug effects , Protein Phosphatase 1/metabolism , Rats , Signal Transduction
17.
Chem Res Toxicol ; 24(10): 1754-64, 2011 Oct 17.
Article En | MEDLINE | ID: mdl-21879721

In the present report, we showed that diphenyl ditelluride (PhTe)(2) induced in vitro hyperphosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament (NF) subunits in hippocampus of 21 day-old rats. Hyperphosphorylation was dependent on L-voltage dependent Ca(2+) channels (L-VDCC), N-methyl-d-aspartate (NMDA) and metabotropic glutamate receptors, as demonstrated by the specific inhibitors verapamil, DL-AP5 and MCPG, respectively. Also, dantrolene, a ryanodine channel blocker, EGTA and Bapta-AM, extra and intracellular Ca(2+) chelators respectively, totally prevented this effect. Activation of metabotropic glutamate receptors by (PhTe)(2) upregulates phospholipase C (PLC), producing inositol 1, 4, 5-trisphosphate (IP(3)) and diacylglycerol (DAG). Therefore, high Ca(2+) levels and DAG directly activate Ca(2+)/calmodulin-dependent protein kinase (PKCaMII) and protein kinase C (PCK), resulting in the hyperphosphorylation of Ser-57 in the carboxyl-terminal tail domain of the low molecular weight NF subunit (NF-L). Also, the activation of Erk1/2, and p38MAPK resulted in hyperphosphorylation of KSP repeats of the medium molecular weight NF subunit (NF-M). It is noteworthy that PKCaMII and PKC inhibitors prevented (PhTe)(2)-induced Erk1/2MAPK and p38MAPK activation as well as hyperphosphorylation of KSP repeats on NF-M, suggesting that PKCaMII and PKC could be upstream of this activation. Taken together, our results highlight the role of Ca(2+) as a mediator of the (PhTe)(2)-elicited signaling targeting specific phosphorylation sites on IF proteins of neural cells of rat hippocampus. Interestingly, this action shows a significant cross-talk among signaling pathways elicited by (PhTe)(2), connecting glutamate metabotropic cascade with activation of Ca(2+) channels. The extensively phosphorylated amino- and carboxyl- terminal sites could explain, at least in part, the neural dysfunction associated with (PhTe)(2) exposure.


Benzene Derivatives/toxicity , Calcium/metabolism , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/drug effects , MAP Kinase Signaling System/drug effects , Neurofilament Proteins/metabolism , Organometallic Compounds/toxicity , Vimentin/metabolism , Animals , Benzylamines/pharmacology , Blotting, Western , Calcium Channels, L-Type/metabolism , Cerebral Cortex/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Electrophoresis, Polyacrylamide Gel , Hippocampus/metabolism , In Vitro Techniques , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation/drug effects , Protein Kinase C/antagonists & inhibitors , Rats , Rats, Wistar , Staurosporine/pharmacology , Sulfonamides/pharmacology
18.
Toxicol In Vitro ; 25(1): 28-36, 2011 Feb.
Article En | MEDLINE | ID: mdl-20837132

Central nervous system dysfunctions are among the most significant effects of exposure to ethanol and the glial cells that play an important role in maintaining neuronal function, are extremely involved with these effects. The actin cytoskeleton plays a crucial role in a wide variety of cellular functions, especially when there is some injury. Therefore the aim of the present study was to analyze the short-term effects of ethanol (50, 100 and 200 mM) on the cytoskeleton of C6 glioma cells. Here we report that acute ethanol exposure profoundly disrupts the actin cytoskeleton in C6 cells decreasing stress fiber formation and downregulating RhoA and vinculin immunocontent. In contrast, microtubule and GFAP networks were not altered. We further demonstrate that anti-oxidants prevent ethanol-induced actin alterations, suggesting that the actions of ethanol on the actin cytoskeleton are related with generation of reactive oxygen species (ROS) in these cells. Our results show that ethanol at concentrations described to be toxic to the central nervous system was able to target the cytoskeleton of C6 cells and this effect could be related with increased ROS generation. Therefore, we propose that the dynamic restructuring of the cytoskeleton of glial cells might contribute to the response to the injury provoked by binge-like ethanol exposure in brain.


Actins/metabolism , Central Nervous System Agents/toxicity , Cytoskeleton/drug effects , Ethanol/toxicity , Nerve Tissue Proteins/metabolism , Neuroglia/drug effects , Reactive Oxygen Species/metabolism , Actins/genetics , Animals , Antioxidants/pharmacology , Cell Line , Cell Survival/drug effects , Central Nervous System Agents/antagonists & inhibitors , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Down-Regulation/drug effects , Ethanol/antagonists & inhibitors , Neuroglia/metabolism , Neuroglia/ultrastructure , Osmolar Concentration , Oxidative Stress/drug effects , RNA, Messenger/metabolism , Rats , Stress Fibers/drug effects , Stress Fibers/metabolism , Time Factors , Vinculin/metabolism , rhoA GTP-Binding Protein/metabolism
19.
Brain Res ; 1355: 151-64, 2010 Oct 08.
Article En | MEDLINE | ID: mdl-20659431

Homocysteine (Hcy) is an excitatory amino acid which markedly enhances the vulnerability of neuronal cells to excitotoxicity and oxidative injury. Patients with severe hyperhomocysteinemia exhibit a wide range of clinical manifestations including neurological abnormalities such as mental retardation, cerebral atrophy, and seizures. In this study we treated cortical astrocytes and neurons in culture with 10 and 100 µM Hcy and after 24h exposure cytoskeletal remodeling was analyzed by immunocytochemistry. We observed dramatically altered actin cytoskeleton in astrocytes exposed to 100 µM Hcy, with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm. Moreover, we observed disruption of the glial fibrillary acidic protein (GFAP) meshwork, supporting misregulation of actin cytoskeleton. Induction of reactive oxygen species (ROS) in astrocytes showed fluctuating levels along 24h exposure to both Hcy concentrations. Actin remodeling induced by 100 µM Hcy was prevented by the antioxidants folate (5 µM) or trolox (80 µM). Unlike astrocyte cytoskeleton, results evidence little susceptibility of neuron cytoskeleton until 24h of treatment, since immunocytochemical analysis showed that 10 and 100 µM Hcy-treated neurons presented unaltered neurite arborization. Moreover, alterations in astrocyte and neuron viability were not observed along the 24h of exposure to Hcy. Neuron/astrocyte co-cultures evidence an anchorage dependence for neuronal survival over long exposure to Hcy. Taken together, these findings indicate, that the cytoskeleton of cortical astrocytes, but not of neurons in culture, is a target to Hcy and such effects are mediated by redox signaling. Astrocytes were able to respond to Hcy (100 µM) reorganizing their cytoskeleton, surviving, and protecting neurons from Hcy damage. Moreover our results suggest a protective role for astrocytes remodeling the cytoskelon, and probably generating signals that would assure neuronal survival in response to the damage induced by Hcy.


Astrocytes/metabolism , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Homocysteine/physiology , Hyperhomocysteinemia/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Animals , Animals, Newborn , Astrocytes/cytology , Astrocytes/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Hyperhomocysteinemia/pathology , Oxidative Stress/drug effects , Phosphorylation/drug effects , Phosphorylation/physiology , Rats , Rats, Wistar
20.
Exp Neurol ; 224(1): 188-96, 2010 Jul.
Article En | MEDLINE | ID: mdl-20303347

In the present study we investigated the effect of in vivo intrastriatal injection of quinolinic acid (QA) on cytoskeletal proteins in astrocytes and neurons of young rats at early stage (30 min) after infusion. QA (150 nmoles/0.5 microL) significantly increased the in vitro phosphorylation of the low molecular weight neurofilament subunit (NFL) and the glial fibrillary acidic protein (GFAP) of neurons and astrocytes, respectively. This effect was mediated by cAMP-dependent protein kinase A (PKA), protein kinase C (PKC) and Ca(2+)/calmodulin-dependent protein kinase II (PKCaMII). In contrast, mitogen activated protein kinases were not activated by QA infusion. Furthermore, the specific N-methyl-D-aspartate (NMDA) antagonist MK-801 (0.25 mg/kg i.p), the antioxidant L-NAME (60 mg\kg\day), and diphenyldisselenide (PheSe)(2) (0.625 mg\kg\day) injected prior to QA infusion totally prevented QA-induced cytoskeletal hyperphosphorylation. We also observed that QA-induced hyperphosphorylation was targeted at the Ser55 phosphorylating site on NFL head domain, described as a regulatory site for NF assembly in vivo. This effect was fully prevented by MK801, by the PKA inhibitor H89 and by (PheSe)(2), whereas staurosporine (PKC inhibitor) only partially prevented Ser55 phosphorylation. The PKCaMII inhibitor (KN93) and the antioxidant L-NAME failed to prevent the hyperphosphorylation of Ser55 by QA infusion. Therefore, we presume that QA-elicited hyperphosphorylation of the neural cytoskeleton, and specially of NFLSer55, achieved by intrastriatal QA injection could represent an early step in the pathophysiological cascade of deleterious events exerted by QA in rat striatum. Our observations also indicate that NMDA-mediated Ca(2+) events and oxidative stress may be related to the altered protein cytoskeleton hyperphosphorylation observed with important implications for brain function.


Astrocytes/drug effects , Corpus Striatum/drug effects , Glial Fibrillary Acidic Protein/metabolism , Neurofilament Proteins/metabolism , Neurons/drug effects , Quinolinic Acid/pharmacology , Analysis of Variance , Animals , Astrocytes/metabolism , Blotting, Western , Corpus Striatum/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Dizocilpine Maleate/pharmacology , Enzyme Inhibitors/pharmacology , Microinjections , NG-Nitroarginine Methyl Ester/pharmacology , Neurons/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Phosphorylation/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
...